Dose–response modeling in mental health using stein‐like estimators with instrumental variables
نویسندگان
چکیده
A mental health trial is analyzed using a dose-response model, in which the number of sessions attended by the patients is deemed indicative of the dose of psychotherapeutic treatment. Here, the parameter of interest is the difference in causal treatment effects between the subpopulations that take part in different numbers of therapy sessions. For this data set, interactions between random treatment allocation and prognostic baseline variables provide the requisite instrumental variables. While the corresponding two-stage least squares (TSLS) estimator tends to have smaller bias than the ordinary least squares (OLS) estimator; the TSLS suffers from larger variance. It is therefore appealing to combine the desirable properties of the OLS and TSLS estimators. Such a trade-off is achieved through an affine combination of these two estimators, using mean squared error as a criterion. This produces the semi-parametric Stein-like (SPSL) estimator as introduced by Judge and Mittelhammer (2004). The SPSL estimator is used in conjunction with multiple imputation with chained equations, to provide an estimator that can exploit all available information. Simulated data are also generated to illustrate the superiority of the SPSL estimator over its OLS and TSLS counterparts. A package entitled SteinIV implementing these methods has been made available through the R platform. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
منابع مشابه
Comparison of Small Area Estimation Methods for Estimating Unemployment Rate
Extended Abstract. In recent years, needs for small area estimations have been greatly increased for large surveys particularly household surveys in Sta­ tistical Centre of Iran (SCI), because of the costs and respondent burden. The lack of suitable auxiliary variables between two decennial housing and popula­ tion census is a challenge for SCI in using these methods. In general, the...
متن کاملComparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملاثر موسیقی آرامش بخش و بی کلام آرند اشتاین بر کیفیت خواب و شادکامی زنان سالمند
Background & Aim: One of the complementary psychological approaches for dealing with problems of ageing individuals is Music therapy. The aim of the current research was to investigate the effectiveness of listening to relaxation and instrumental music by Arnd Stein on quality of sleep and happiness among ageing women in nursing home. Methods: The current study was a quasi-experimental study i...
متن کاملStein Type Estimators for Disturbance Variance in Linear Regression Model
This article has no abstract.
متن کاملAveraged Instrumental Variables Estimators
We develop averaged instrumental variables estimators as a way to deal with many weak instruments. We propose a weighted average of the preliminary k-class estimators, where each estimator is obtained using different subsets of the available instrumental variables. The averaged estimators are shown to be consistent and to satisfy asymptotic normality. Furthermore, its approximate mean squared e...
متن کامل